
Mu2e & the CMS-Lite
Framework

Rob Kutschke, Fermilab February 11, 2010

Mu2e-doc-779-v1

http://mu2e-docdb.fnal.gov/cgi-bin/ShowDocument?docid=779

CMS-Lite

•  Not an official name
–  CMS has something else called the same thing (spelling?).

•  Start with CMS’s software.
–  Strip out things that we do not need or which CMS scientists find

too hard to use.

•  Runs on:
–  SLF 4 and 5
–  32 and 64 bit hardware.

•  No plans to port to Windows.
•  Might port to Mac some day?

February 11, 2010 Rob Kutschke/CMSLite 2

Finding the Tutorials

•  Home page:
–  http://mu2e.fnal.gov
–  Click on “Mu2e For Physicists” button at the top
–  The Mu2e Offline Software
–  Running G4 in the Mu2e Framework on ilcsim* and FNALU

•  You all have accounts on ilcsim and ilcsim2.
–  ssh –Y ilcsim (and forward kerberos creds).

•  You all have permission to use the cvs repository.
–  Must have kerberos creds.
–  http://mu2e.fnal.gov/public/hep/computing/cvs.shtml
–  setenv CVSROOT mu2ecvs@cdcvs.fnal.gov:/cvs/mu2e
–  setenv CVS_RSH /usr/bin/ssh

February 11, 2010 Rob Kutschke/CMSLite 3

setup.sh

•  Must source from bash.
•  $MU2E_HOME

–  Misnamed. Should be $FRAMEWORK_HOME.

•  $MU2E_EXTERNALS
–  Most of the external packages: root, boost, CLHEP

•  $GEANT4_DIR
–  We find G4 using ups/upd.

•  $LD_LIBRARY_PATH
–  ./lib plus framework, externals and G4.

•  The code you check out is the full code Mu2e code base.
–  No concept of base release yet.

February 11, 2010 Rob Kutschke/CMSLite 4

3 Part Event Id

•  Run / LuminosityBlock / Event
–  Expect this to be good enough for us.

•  Run:
–  0 or more luminosity blocks.

•  LuminosityBlock:
–  0 or more events.
–  must be contained within one file.

•  A file may contain multiple LuminosityBlocks, multiple
runs.

February 11, 2010 Rob Kutschke/CMSLite 5

Start the Tutorials

•  Make sure you can run
–  g4test_01.py
–  g4test_02.py
–  g4test_03.py
–  readback.py

•  Then we will look at the code, run time
configuration files for readback.py and work
backwards.

February 11, 2010 Rob Kutschke/CMSLite 6

Some Files from ReadBack Example

•  mute
–  The executable

•  Mu2eG4/test/readback.py
–  Run time configuration information for

•  Framework, all modules, all services

•  Module Source
– Mu2eG4/src/ReadBack.hh
– Mu2eG4/src/ReadBack.cc
– Mu2eG4/src/ReadBack_plugin.cc

•  Mu2eG4/test/geom_01.txt
–  Geometry description.

February 11, 2010 Rob Kutschke/CMSLite 7

What’s in the Input File?

•  ToyDP/inc/StepPointMC.hh
•  Represents the intersection of a track in G4 with a volume in the

detector.
–  In this example: the exit point from a straw in the Ltracker.

•  typedef vector<StepPointMC> StepPointMCCollection;
•  The input file contains one StepPointMCCollection.
•  Name of the module that made it is: g4run.

February 11, 2010 Rob Kutschke/CMSLite 8

 int _trackId; 	

 VolumeId_type _volumeId; 	

 double _enegyDeposition; 	

 CLHEP::Hep3Vector _position; 	

 CLHEP::Hep3Vector _momentum;	

 double _time; 	

The Mu2e LTracker

February 11, 2010 Rob Kutschke/CMSLite 9

Cartoon of Some Major Elements

March 14, 2009 Rob Kutschke/Framework Intro 10

Input from file

Unpack Hits

Find/Fit Tracks

Match Track/ECal

Output to file

Event loop Configuration
RunTimeConfig.py

Input data 1…N

Output data 1…N

Geometry file/db
Event data

Framework Modules Services Files/DB Data in Memory

Geometry Service

Comments on Previous Slide

•  Black: framework including configuration
•  Blue: event loop
•  Purple: data in memory that can be stored in files.
•  Green: Modules

–  User code that can be called by the framework.

•  Orange: Services
–  You will write code for the Geometry or Conditions services and

maybe some others.

•  Red: external files
–  Run time config configures: framework, each module, each service.
–  Geometry file: will some day live in a db.

March 14, 2009 Rob Kutschke/Framework Intro 11

Services

•  Only one instance of each service class within a job
–  Geometry, Condidations data …

•  Can be used inside all modules
•  Instantiated, owned and managed by framework.
•  Configuration from the run time configuration file.
•  Framework calls services for:

–  beginJob, beginRun, beginLuminosityBlock

February 11, 2010 Rob Kutschke/CMSLite 12

February 11, 2010 Rob Kutschke/CMSLite 13

#include "FWCore/Framework/interface/EDAnalyzer.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h”

namespace mu2e {

 class ReadBack : public edm::EDAnalyzer {
 public:

 explicit ReadBack(edm::ParameterSet const& pset);
 virtual ~ReadBack() { }

 virtual void beginJob(edm::EventSetup const&);

 void analyze(const edm::Event& e, edm::EventSetup const&);

 // plus data members (next page) and other function members.

 };
}

Mu2eG4/src/ReadBack.hh

ReadBack.hh continued

February 11, 2010 Rob Kutschke/CMSLite 14

 double _minimumEnergy;
 int _maxFullPrint;
 int _nAnalyzed;

 // Pointers to histograms and ntuples to be filled.
 TH1F* _hRadius;
 TH1F* _hEnergyDep;
 TH1F* _hTime;
 TH1F* _hMultiplicity;
 TH1F* _hDriftDist;
 TH1F* _hxHit;
 TH1F* _hyHit;
 TH1F* _hzHit;
 TH1F* _hHitNeighbours;
 TH1F* _hCheckPointRadius;
 TNtuple* _ntup;

Comments on Previous 2 Slides

•  Namespace: avoid collisions with 3rd party names.
•  Must inherit from a module base class

–  EDAnalyzer: event is readonly
–  EDProducer: can add information to the event
–  EDFilter: can tag an event to go to a particular output file.

•  Run time parameters passed to c’tor: edm::ParameterSet
•  Event data passed into analyze is const edm::Event .
•  Ignore edm::EventSetup

–  Leftover from CMS
–  Will go away.

•  Lots of other allowed methods: see next slide.

February 11, 2010 Rob Kutschke/CMSLite 15

Other Methods of EDAnalyzer

February 11, 2010 Rob Kutschke/CMSLite 16

 virtual void analyze(Event const&, EventSetup const&) = 0;
 virtual void beginJob(EventSetup const&){}
 virtual void endJob(){}
 virtual void beginRun(Run const&, EventSetup const&){}
 virtual void endRun(Run const&, EventSetup const&){}
 virtual void beginLuminosityBlock(LuminosityBlock const&, EventSetup const&){}
 virtual void endLuminosityBlock(LuminosityBlock const&, EventSetup const&){}
 virtual void respondToOpenInputFile(FileBlock const& fb) {}
 virtual void respondToCloseInputFile(FileBlock const& fb) {}
 virtual void respondToOpenOutputFiles(FileBlock const& fb) {}
 virtual void respondToCloseOutputFiles(FileBlock const& fb) {}

$MU2E_HOME/FWCore/Framework/interface/EDAnalyzer.h

Specifying Include Files

February 11, 2010 Rob Kutschke/CMSLite 17

// Framework includes
#include "FWCore/Services/interface/TFileService.h”

// Mu2e includes
#include "GeometryService/inc/GeometryService.hh"

// Root includes.
#include "TH1F.h”

// G4 includes
#include “G4VPhysicalVolume.h”

// Other includes
#include "CLHEP/Units/SystemOfUnits.h"

•  Mu2e code: relative to Offline
•  Framework: relative to its root
•  External: use style that is native to each package.

More About Include files

•  Some include files are in:
–  Package/inc/File.hh
–  Package/src/File.hh

•  Why?
•  If class is only for use inside the package, put it

in src. Otherwise put it in inc.
•  You can choose to do it differently.

February 11, 2010 Rob Kutschke/CMSLite 18

EDAnalyzer Module Constructor

February 11, 2010 Rob Kutschke/CMSLite 19

 ReadBack::ReadBack(edm::ParameterSet const& pset) :
 _minimumEnergy(pset.getParameter<double>("minimumEnergy")),
 _maxFullPrint(pset.getUntrackedParameter<int>("maxFullPrint",5)),
 _nAnalyzed(0),
 _hRadius(0),
 _hTime(0),
 // Plus the rest
 { }

•  Parameter set comes from the .py file.
•  Tracked vs untracked. See next page.
•  Reminder: initialize in order given in .hh file.

Run Time Configuration File

February 11, 2010 Rob Kutschke/CMSLite 20

process.checkhits = mu2e.EDAnalyzer(
 "ReadBack",
 minimumEnergy = mu2e.double(0.001),
 maxFullPrint = mu2e.untracked.int32(3)
)

•  Class name of module:
•  lib/libReadBack.so
•  SomePackage/src/ReadBack_plugin.cc

•  Module Label: must be unique within one job.
•  Parameter Set:

•  Remaining parameters to closing.
•  Tracked and Untracked: see next page.
•  A parameter can have a value that is another parameter set.

Tracked vs UnTracked Parameters

•  Tracked
–  Must be present in the configuration file or it is a run time error.
–  Values are included in the event data file.
–  Audit trail.

•  Untracked
–  Coder can assign defaults to use if parameter is absent in the

config file.
–  Not written to the event data file

•  Up to us to use this feature wisely.

February 11, 2010 Rob Kutschke/CMSLite 21

beginJob

February 11, 2010 Rob Kutschke/CMSLite 22

 void ReadBack::beginJob(edm::EventSetup const&){

 edm::Service<edm::TFileService> tfs;

 _hRadius = tfs->make<TH1F>("hRadius",
 "Radius of Hits;(mm)", 100, 0., 1000.);
 _ntup = tfs->make<TNtuple>("ntup", "Hit ntuple",
 "evt:trk:sid:hx:hy:hz:wx:wy:wz:dca:time:dev:sec");
 }

•  TFileService
–  new T(...) replaced by tfs->make<T>(…)
–  Manages conflicts with root IO.
–  Puts your histograms in a unique subdirectory.

–  May make your own subdir’s under this.

–  Or make per run histograms in beginRun.

analyze

February 11, 2010 Rob Kutschke/CMSLite 23

 void ReadBack::analyze(const edm::Event& event, edm::EventSetup const&) {

 // Call code appropriate for the tracker that is installed in this job.
 edm::Service<GeometryService> geom;
 if(geom->hasElement<LTracker>()){
 doLTracker(event);
 }
 else if (geom->hasElement<ITracker>()){
 doITracker(event);
 }

 }

•  Geometry service holds the geometry in a representation that is
appropriate for reconstruction.

•  Details later.
•  LTracker and ITracker are competing designs; don’t yet understand

the true commonalities.

Accesing Hits

February 11, 2010 Rob Kutschke/CMSLite 24

 void ReadBack::doLTracker(const edm::Event& event){

 // Ask the event to fill a handle to the requested hits.
 edm::Handle<StepPointMCCollection> hits;
 event.getByLabel(“g4run”,hits);

 // Fill histogram with number of hits per event.
 _hMultiplicity->Fill(hits->size());

•  typedef vector<StepPointMC> StepPointMCCollection;
•  Handles:

–  Throws if the requested object could not be found.
–  Otherwise behaves like a pointer.

•  getByLabel
–  Looks for a data product of the requested type that was created

by a module with the label “g4run”.

Message Logger

February 11, 2010 Rob Kutschke/CMSLite 25

 // A silly example just to show that we have a messsage logger.
 if (hits->size() > 75){
 edm::LogWarning("HitInfo")
 << "Number of hits "
 << hits->size()
 << " is too large.";
 }

•  Severities: Debug/Info/Warning/Error
–  With and without framing data: module, date, time.

•  Suppress repeated printout
•  End of job summary.
•  Separate routing for different classes of messages.
•  Much more configurable that we will ever need.

 Exceptions

February 11, 2010 Rob Kutschke/CMSLite 26

 // A silly example just to show how to throw.
 if (hits->size() > 1000000){
 throw cms::Exception("RANGE")
 << "Way too many hits in this event. Something is really wrong."
 << hits->size();
 }

•  Framework will catch exception and end job gracefully.
•  Can configure framework to:

–  skip this module; skip to next event; skip to next run; etc.
–  Do it differently for different exceptions.

Combining Hit and Geometry Info

February 11, 2010 Rob Kutschke/CMSLite 27

 GeomHandle<LTracker> ltracker; // Geometry for the Ltracker from Geometry Service.
 float nt[13]; // ntuple buffer.

 // Loop over all hits.
 for (size_t i=0; i<hits->size(); ++i){

 // References (aliases) for readability.
 const StepPointMC& hit = (*hits)[i];

 // Skip hits with low pulse height.
 if (hit.eDep() < _minimumEnergy) continue;

 // Get the hit information.
 const Hep3Vector& pos = hit.position();
 const Hep3Vector& mom = hit.momentum();

 // Get the straw information:
 const Straw& straw = ltracker->getStraw(hit.strawIndex());
 const Hep3Vector& mid = straw.getMidPoint();
 const Hep3Vector& w = straw.getDirection();

•  Heavy use of references: no copies.
•  Use pointers only when necessary.

The rest of doLTracker()

February 11, 2010 Rob Kutschke/CMSLite 28

 // Compute an estimate of the drift distance.
 TwoLinePCA pca(mid, w, pos, mom);

 // Fill some histograms
 _hRadius->Fill(pos.perp());
 _hEnergyDep->Fill(hit.eDep()/keV);
 _hTime->Fill(hit.time());
 _hHitNeighbours->Fill(nNeighbours);
 _hCheckPointRadius->Fill(point.mag());

 // Fill the ntuple.
 nt[0] = event.id().event();
 nt[1] = hit.trackId(); // and so on

 _ntup->Fill(nt);

Geometry Philosophy

•  Three clients:
–  Reconstruction/Analysis G4 Visualization
–  Very different requirements.
–  One must be authoritative and others derived.

•  Have seen many bad experiences with 1 size fits all
–  Especially when reconstruction/analysis is considered last.

•  My choice:
–  Classes in GeometryService are designed for reconstruction.
–  Write code to create G4 and visualization from this.
–  It should be easy to diff two geometry descriptions.

•  Geometry text files are compact, O(200) numbers to describe Mu2e. The
corresponding GDML file will be many MB

February 11, 2010 Rob Kutschke/CMSLite 29

Making Module or Service

•  Three separate files:
– Module.hh, Module.cc, Module_plugin.cc
–  Examples:

•  Mu2eG4/src/ReadBack*
•  GeometryService/src/GeometryService*

•  Or you can do it all in one file:
– Mu2eG4/src/G4_plugin.cc

February 11, 2010 Rob Kutschke/CMSLite 30

ReadBack_plugin.cc

February 11, 2010 Rob Kutschke/CMSLite 31

#include "Mu2eG4/src/ReadBack.hh"
#include "FWCore/Framework/interface/MakerMacros.h"

using mu2e::ReadBack;
DEFINE_FWK_MODULE(ReadBack);

•  The macro puts code in lib/libReadBack_plugin.so
–  Factory method to new an object of the class.
–  Automagically register the factory with the framework.

•  For some notes on how this works
–  http://mu2e.fnal.gov/public/hep/computing/dynamicLibraries/

dynamic.shtml

Exercise 1

February 11, 2010 Rob Kutschke/CMSLite 32

 if (hits->size() > 1000000){
 throw cms::Exception("RANGE")
 << "Way too many hits in this event. Something is really wrong."
 << hits->size();
 }

ReadBack.cc

•  Change 1000000 to 100; scons and re-run.
•  Framework will catch exception and shutdown gracefully.
•  Histograms are written out.
•  Can configure framework to skip to next event, skip to next run,

abort hard …

Exercise 2: readback.py

February 11, 2010 Rob Kutschke/CMSLite 33

process.lowcut = mu2e.EDAnalyzer(
 "ReadBack",
 minimumEnergy = mu2e.double(0.001),
 maxFullPrint = mu2e.untracked.int32(3)
)

process.highcut = mu2e.EDAnalyzer(
 "ReadBack",
 minimumEnergy = mu2e.double(0.002),
 maxFullPrint = mu2e.untracked.int32(0)
)

process.output = mu2e.EndPath(process.lowcut*process.highcut);

•  Add a second instance of the module ReadBack
•  Inspect the root file. See two subdirectories.

Package/src/SConscript

•  *.cc but not *_plugin.cc files.
–  Compile.
–  Add to lib/libPackage.so
–  You edit SConscript to add link time dependencies by hand.

•  XXXXXX_plugin.cc
–  Compile each to form lib/libXXXXXX_plugin.so
–  May make many of these in one package
–  lib/libPackage.so is added as a link time dependency to all

XXXXXX_plugin.so files.

•  .os files are object files destined for .so libraries
(distinguished from .o destined for .a)

•  Inherits environment from Offline/SConstruct

February 11, 2010 Rob Kutschke/CMSLite 34

Mu2eG4/test/readback.py

•  Mostly boilerplate. I find this language verbose

February 11, 2010 Rob Kutschke/CMSLite 35

Define the default configuration for the framework.
import FWCore.ParameterSet.python.Config as mu2e

Give this job a name.
process = mu2e.Process("ReadBack01")

Maximum number of events to do.
process.maxEvents = mu2e.untracked.PSet(
 input = mu2e.untracked.int32(200)
)

Load the standard message logger configuration.
Threshold=Info. Limit of 5 per category; then exponential backoff.
process.load("Config/MessageLogger_cfi")

Configure 3 of the Services

February 11, 2010 Rob Kutschke/CMSLite 36

Load the service that manages root files for histograms.
process.TFileService = mu2e.Service("TFileService",
 fileName = mu2e.string("readback.root"),
 closeFileFast = mu2e.untracked.bool(False)
)

Initialize the random number sequences.
This just changes the seed for the global CLHEP random engine.
process.RandomNumberService = mu2e.Service
("RandomNumberService",
 globalSeed=mu2e.untracked.int32(9877),
)

Define the geometry.
process.GeometryService = mu2e.Service("GeometryService",
 inputfile=mu2e.untracked.string("Mu2eG4/test/geom_01.txt")
)

RandomNumber Service

•  Eventually this will be able to chain random
number sequences across chains of jobs.

•  Will be able to preserve the state of many
independent generators.

•  For now it just sets the seed in the global
instance of the flat CLHEP engine.

February 11, 2010 Rob Kutschke/CMSLite 37

February 11, 2010 Rob Kutschke/CMSLite 38

Read events from a file (made by example 3)
process.source = mu2e.Source("PoolSource",
 fileNames = mu2e.untracked.vstring("data_03.root")
)

Look at the hits from G4.
- minimum energy is in MeV
process.checkhits = mu2e.EDAnalyzer("ReadBack",
 minimumEnergy = mu2e.double(0.001),
 maxFullPrint = mu2e.untracked.int32(3)
)

End of the section that defines and configures modules.

Tell the system to execute the modules in this order.
process.output = mu2e.EndPath(process.checkhits);

Adding Data to the Event

•  Write an EDproducer module
•  Need to tell the system about the classes that may be

persisted.
•  Described in:

–  http://mu2e.fnal.gov/public/hep/computing/DataProducts.shtml

•  Example in:
–  HitMakers/src/MakeCrudeStrawHit_plugin.cc
–  HitMakers/test/makehits.py

February 11, 2010 Rob Kutschke/CMSLite 39

Backup Slides

February 11, 2010 Rob Kutschke/CMSLite 40

Cartoon of the Major Elements

March 14, 2009 Rob Kutschke/Framework Intro 41

Input from file

Unpack Hits

Find/Fit Tracks

Match Track/ECal

Output to file

Conditions Service

TFile Service

Message Logger

Event loop Configuration
RunTimeConfig.py

Input data 1…N

Output data 1…N

Histogram file

Geometry file/db

Message log files

Event data

Per lumi block data

Per run data
Conditions db

Geometry Service

Comments on Previous Slide

•  Black: framework including run time configuration
•  Blue: event loop
•  Purple: data that can be stored in files.
•  Green: Modules

–  This is where most of your code will go.

•  Orange: Services
–  Some of you might write code for the Geometry service.

•  Red: external files
–  Geometry file: will some day live in a db.

•  Message logger:
–  Direct messages to different files based on severity and category.

March 14, 2009 Rob Kutschke/Framework Intro 42

